
iDevices IoT Cloud Infrastructure

Introduction To
iDevices Coyote

Coyote efficiently solves communication needs for connected
devices without increasing development costs, retaining end-
to-end model (no additional server programming required)
with minimal memory and CPU footprints, and with orders of
magnitude lower costs for device lifetime connectivity when
compared to competing solutions. It handles firewalls and
NATs smoothly, and its datagram nature greatly reduces the
load on the network infrastructure while ensuring ping-level
end-to-end latencies.

TECHNOLOGY DIFFERENTIATORS

• Short latency real-time communications
• Has storage
• Wide range of applications, from remote control to live

video streaming
• Support for battery operated devices with ultra-low

duty cycles
• Lifetime provisioning model at time of manufacturing
• Zero on-boarding, handled by ‘coins’
• Native handling of NATs and firewalls
• Secure and audited

• Orders of magnitude lower costs to eliminate
consumer- pricing impact

 Sample lifetime cost:
• One-way environmental sensors: $0.50
• Smart plugs: $1.00
• Video streaming 1hr/day, 2hrs stored: $20.00

• Device lifetime access granted at manufacture time. Zero
after-market onboarding.

• Eliminates the need for, and cost of, server programming.
All interaction is between devices and controllers (handsets,
etc.) If it works locally, it works remotely.

• The same technology covers a wide range of use cases, from
simple sensors and switches to video streaming.

• Users, not the IoT/IP Infrastructure, own data.

BUSINESS DIFFERENTIATORS

SERVICES

• Conduit: A fast, secure and transparent real-time communication
bridge between devices and controllers. On one side this bridge
is terminated by IoT/IP enabled accessories (devices), which
may also provide remote connectivity to other (legacy) devices
without IoT/IP capability. On the other side, it is terminated
by controllers (handsets) or server-based applications. No new
trust relationships are formed and the existence of Coyote is
hidden from the users.

• EStorage: Key-value storage service for short or long time-
shifted data exchange between accessories, controllers and
server-based applications, including video streaming.

For both services, ‘pairing’ an accessory with one or more
controllers enables the basic naming and security model. This
pairing provides a unique identifier in a sparse name space, which
is required to access real-time communication channels or stored
records. It can be viewed as a key-value communication channel
and a key-value store. ‘Keys’ are sparse and impossible to guess
(similar to, but far more secure than telephone confernce call PINs).
While all communication between Coyote and clients is encrypted,
application developers are advised to use independent end-to-end
encryption provided by the SDK. Coyote is without knowledge of
what data goes through it or is stored in it.

DDoS

General DDoS attacks are mitigated by large, uniform attack
surfaces across all servers, and targeted DoS attacks are prevented
by the huge private address space.

Infrastructure
Coyote is a passive conduit and storage channel of data that it
cannot understand. It does not need to identify clients, instead,
the IoT/IP access authorization itself is based on anonymous
bearer certificates (‘coins’), and it does not understand the
semantics of communications, or of stored records. Only devices
(accessories) need coins, everyone else gets access for free, within
the constraints of specific services. It involves no onboarding,
meaning there are no accounts, no logins, no dashboards and no
new relationships.

CAPACITY

As of July 2015, the system capacity is 400,000 transactions per
second, which supports around 50 million switch-like devices, and
it is expected to double by the end of 2015.

HIGH AVAILABILITY

Coyote consists of growing sets of bare metal servers
placed in premium colocations at major Internet exchange
points, connected to the backbone, in all cases, by two
independent tier-1 bandwidth providers. The system
operates in a highly redundant mode without performance or
availability bottlenecks.

Integration Roadmap

1. DEVELOPER ONBOARDING

Authorized IoT/IP developers get access to the iDevices IoT SDK,
support, test coins and the development infrastructure. In some
cases, iDevices’ staff performs the initial integration.

2. INTEGRATING SDK

The flow of this step depends on the nature of the project. Some
possible scenarios are:
• Completely new device, built ground-up for IoT/IP
• Adding IoT/IP connectivity to the exisiting device
• Providing IoT/IP connectivity only at the handset level
• Using an existing IoT/IP-enabled device as a bridge

3. TESTING

Developers get access to both a dedicated testing infrastructure
(X-Ray servers), which provides detailed feedback essential in
the early phases of development, and to the fast deployment
infrastructure, where they can experience IoT/IP at full speed.

4. MANUFACTURING INTEGRATION

The OEM is issued coins for their particular class of devices and
each device is permanently provided with one coin. Coins are
typically valid for the lifetime of the device.

5. DEPLOYMENT

Devices are sold to consumers and no further action is required. If
necessary, iDevices deploys additional servers closer to the target
market(s). Co-operation of Coyote with OEM is an option.

Coyote Essentials
The main objective of Coyote is to provide an efficient solution
for two major aspects of device connectivity: communication
setup and communication channel.

DISCOVERY + PROVISIONING

The discovery involves establishing the initial after-market
association between devices (out of the box) and their controllers
(usually the exisiting handsets and/or servers.) During this
process the two sides learn each other’s identities and perform
an exchange of credentials and other information required for
operation of the device. This will ensure a reliable establishment
of secure connections in the future.

Coyote and iDevices IoT SDK provide several features to facilitate
the provisioning:

• CrossCast: Fast and reliable Wi-Fi® communication method
where the device does not need to know Wi-Fi® access
point credentials or associate with one, and does not require
either side to enter Access Point mode. CrossCast typically
provisions the device with 2 kilobytes of information, in noisy
environments, in less than 1 second.

• Estorage: A standard feature of Coyote, used as a provisioning
mediator for low-duty cycle devices. EStorage allows for
efficient communication for devices with ultra-low energy
budget.

This provisioning process consists of several steps:

1. Establish a shared secret for the initial communication, ensuring
that the involved controller actually talks to the device involved,
and not the neighbor’s. This is usually done with out-of-band
signaling by the user (e.g. by typing in the PIN printed on the
device or by Bluetooth® pairing, etc.)

2. Using the initial shared secret, provide the following
information, with the initial communication channel (CrossCast
or Bluetooth®):
• Network access information, if applicable. For example,

Wi-Fi® access point credentials. This step may cause the
switch from the initial communication mode to the new one
(IP over Wi-Fi®).

• Channel names to be used for communicating with peers,
and credentials for authenticating (such as public keys).

• Other required information, such as specific device
characteristics or settings.

3. Testing the newly established communication channel, names
 and credentials.

In a typical consumer scenario, the device does not have any user
input hardware and initially knows only its unique ID(s), such as
PIN printed on the device (or Bluetooth® pairing PIN), which is
sufficient for Step 1.

The following SDK API calls perform the provisioning:

On the controller side:
int provision_send(uint8_t *pin, int pinlen, uint8_t CSID[16],
uint8_t *mypubkey, int mypubkeylen, uint8_t *devicepubkey,
int *devicepubkeylen);

 [devicepubkey and devicepubkeylen are returned values.]
On the device side:

int provision_get(uint8_t *pin, int pinlen, uint8_t *mypubkey,
int mypubkeylen, uint8_t *CSID, uint8_t *controllerpubkey,
int *controllerpubkeylen);
[CSID, controllerpubkey and controllerpubkeylen are
returned values.]

Coyote consists of many redundant bare-metal servers
located at premium colocations in North America, Europe
and China, connected to multiple Tier-1 bandwidth
providers.

The communication is based on UDP over IPv4, thus covering all
existing consumer markets. The following table illustrates basic
features of IoT/IP compared to the familiar TCP/IPv4 stack:

The SDK is OS-neutral and has been tested on multiple firmware,
handset, desktop and server platforms. The memory footprint is
very small, enabling integration when the available space is very
tight (130Kb code and 10Kb RAM on ARM architectures.)

COMMUNICATION BASICS

Feature IoT/IP TCP/IP
Address Space 128 bits 32 bits

Address Authority Self-assigned by
devices Infrastructure-assigned

Address Exposure Private Public

Compulsory
Encryption Between
Routers

256-bit None

NAT Piercing Native None

Storage Short term and medium
term None

Conduit enables real-time, low-latency, end-to-end
communications. The SDK provides a rich functionality interface
beyond the basic datagram mode, including reliable messaging,
end-to-end encryption, connection hibernation, etc. The full
description is available in the iDevices® SDK User Guide.

The Conduit API provides for fast integration for all application
models. The device can be a traditional server or client, or it
can operate in custom modes. Connections can be datagram
or reliable.

The calls include:
iot_connection_create();
iot_send();
iot_receive();
iot_connection_close();

CONDUIT

EStorage enables short-term (hours) to medium-term (days)
retention of key-value records.

EStorage is typically used for:
• Storing device log records for further analysis
• Capturing communication from ultra-low duty cycle devices
• Video streaming (both live and recording)
• Firmware updates

The SDK provides additional functionality including reliable
get and put, authenticated updates, etc. The full description is
available in the iDevices® SDK User Guide.

ESTORAGE

The platform includes compulsory client<>IoT server encryption
with 256-bit ciphers with forward secrecy:

DEVICE TO SERVER SECURITY

Conduit communications have additional SDK-provided, end-to-
end encryption with forward secrecy with a different cipher suite
than the one used for client-server communication.

END-TO-END SECURITY

AUTHENTICATION

Mode Accessory Controller Use Case Actions

2-Way
Authenticated

Knows C’s
public key.
Has fixed
key pair.

Knows A’s
public key.
Has fixed
key pair.

Private
pairing

Each side
verifies other
by sending
nonce. C
creates

ephemeral
key pair, sends
public key to A.

A creates
sesion key,

sends to C via
ephemeral key.

1-Way
Authenticated

Knows C’s
public key. Has

no fixed key
pair.

Doesn’t know
A’s public key.
Has fixed key

pair.

Trusted
controller.

Many
accessories
talking to
a trusted

backend server
(firmware
updates).

A verifies C
with nonce,
creates own

key pair, sends
public key to
C. C creates
session key,

sends to A via
A’s public key.

1-Way
Authenticated

Doesn’t know
C’s public key.
Has fixed key

pair.

Knows A’s
public key. Has

no fixed key
pair.

Many random
controllers
talking to a

trusted
accessory
(weather
station).

C verifies A
with nonce,
creates own

key pair, sends
public key to
A. A creates
session key,

sends to C via
Cs public key.

Ad Hoc
Doesn’t know
C’s public key.
Has no fixed

key pair.

Doesn’t know
A’s public key.
Has no fixed

key pair.

VoIP/video
conferencing

C creates
ephemeral key

pair, sends
public key to
A. A creates
session key,

sends to C via
ephemeral key.

All authentication scenarios are provided for:

Application Examples
To illustrate Coyote integration scenarios, several different
applications are described below, ranging from battery-operated
sensors to live video streaming.

ULTRA-SHORT DUTY CYCLE

Combination of CrossCast provisioning, EStorage and Conduit
services can enable ultra-short duty cycles, resulting in low-energy
budgets and extending battery life of full-power and full-range
Wi-Fi® devices to many years. These are typically environmental
sensing (temperature, humidity, vibrations, etc.) One such example
would be a Water Leak Detector. It is a battery-operated, low cost
Wi-Fi® device (with full power radio and range) that reports water
presence every few hours. The negative messages are recorded
to EStorage, and a separate process periodically scans these for
non-reporting (malfunctioning) devices. The positive messages
are additionally relayed via Conduit to the instant-messaging
alert service. The projected battery life on 2 AAA batteries
is 6+ years.

DUAL PROTOCOL DEVICES

Coyote, due to its small footprint, can be implemented as
an additional transport layer, either in parallel with or under
the existing one, to provide complete transparency to the
application layer.

For example, the iDevices® Switch product falls in this
category. While it implements Apple HomeKit™ protocol,
it can use Coyote if the native remote access transport of
HomeKit™ is not available. Any switching between the two is
transparent to the user.

HANDSET TO HANDSET RELAY

There are many Bluetooth® only devices that are locally operated
with handset apps, and due to nature of Bluetooth® connections,
only one handset can access any device at one time.

For the iDevices®, iGrill®, a Bluetooth® grilling thermometer, a
relay feature was added to the original Bluetooth®-only app. This
enables all handsets paired with a particular iGrill® to access it
remotely, as long as at least one paired handset is in Bluetooth®
contact with the iGrill®. There were no changes to the user
interface, and connectivity switched automatically. For example,
if handset A has a local Bluetooth® connection with the iGrill®
acting as a relay, and handset B is remote, both have the same
access. If B moves close to the iGrill® and A moves away, beyond
Bluetooth® range, the switch is automatic (B becomes relay)
without any interruption.

VIDEO STREAMING

The device has a USB connector and can accept modern USB
cameras. The video stream is segmented and encoded in
EStorage records with forward error correction. The controller, or
multiple controllers, can access either the live video stream, or
previously recorded footage.

1

iDevicesinc.com

Contact iDevices
To Learn More

If you’re interested in how Coyote can help
your brand get connected, contact us at:

iDevicesinc.com/Coyote
IoT@iDevicesinc.com

or call:
800.277.3381

